Modeling Adverse Event Rates of Opioids for the Treatment of Osteoarthritis Pain using Literature Data

Farkad Ezzet (1), Klaas Prins (2) & Martin Boucher (3)

(1) Pharsight, A Certara Company, St Louis, MO, USA, (2) Pharsight, A Certara Company, Netherlands, (3) Global Pharmacometrics, Pfizer Limited, Sandwich, UK

OBJECTIVES

To characterize adverse event (AE) and dropout profiles of opioids for the treatment of Osteoarthritis Pain (OA) using literature data

Tools & Methodology:

- To use mixed effects models to describe differences in dropout rates and AE's between drug classes/doses
- Attention was focused on dropout rates due to AE's and proportions reporting events of constipation and nausea

BACKGROUND

Data: The database included close to 40 placebo controlled studies reporting dropouts rates and rates of AE's in over 12000 OA patients

Definitions:

- Treatments were classified according to opioid strength as non-opioid (APAP, Ibuprofen, Naproxen), moderate (Codeine, Dextropropoxyphene, Tramadol) and strong (Fentanyl, Hydromorphone, Morphine, Oxycodone, Oxymorphone). In addition to Tapentadol and placebo
- We sought to estimate %attenuation due to active treatment using placebo as a reference

Model

N

 $\ensuremath{\bullet}\xspace{\rm Using}$ proportions data together with sample size, the number of events is dealt with as a binomial variable

-A binomial model estimates the probability of an event (p) as a function of influential variables (X), as expressed in equation (1)

•The covariate vector X can be any combination of discrete, categorical, factor and continuous variables

 Treatment dose is normalized by median value, and considered as a continuous variable

X_{ijk} is a vector of k covariate	values observ	red in the <i>ith</i>	arm of the <i>jth</i> study
β_{ijk} is a vector of parameter co	efficients to	be estimated	

 $\eta_i \sim N(0, \sigma^2)$ is study random effect

 $\log(\frac{p_{ij}}{1 - p_{ij}}) = \sum_{k=1}^{m} X_{ijk} . \beta_{ijk} + \eta_{j}$ (1)

Model Summary and Results	
Model for Dropouts due to AE	

Model for Dropouts due to AE					Ν	Model for Proportion with Consitpation						Model for Proportion with Nausea					
Parameter	Value	Std.Error	DF	t-value	p-value	Parameter	Value	Std.Error	DF	t-value	p-value	Parameter	Value	Std.Error	DF	t-value	p-value
Placebo	-2.72	0.12	53	-21.8	< 0.0001	Placebo	-3.13	0.18	44	-17.3	< 0.0001	Placebo	-2.5	0.16	42	-15.9	< 0.000
Non-Opd	-2.53	0.31	53	-8.2	< 0.0001							Non-Opd	-2.44	0.46	42	-5.3	< 0.000
Moderate Opd	-2.37	0.18	53	-12.8	< 0.0001	Non-Opd	-2.72	0.36	44	-7.5	< 0.0001	Moderate Opd	-1.97	0.25	42	-7.8	< 0.000
Strong Opd	-1.77	0.28	53	-6.3	< 0.0001	Moderate Opd	-2.53	0.25	44	-10	< 0.0001	Strong Opd		0.15	42	-5.3	< 0.000
Tapentadol	-1.65	0.2	53	-8.4	< 0.0001	Strong Opd	-1.09	0.18	44	-6.2	< 0.0001	Tapentadol		0.15	42	-5.5	< 0.000
Oxymorphone	0.91	0.24	53	3.8	< 0.0001	Tapentadol	-2.15	0.21	44	-10	< 0.0001						
of Moderate Opd	0.85	0.14	53	5.9	< 0.0001							Oxymorphone	0.56	0.27	42	2	0.048
ose of Strong Opd	0.71	0.24	53	2.9	0.005	Dose of Moderate Opd	0.58	0.16	44	3.7	0.001	Dose of Moderate Opd	0.47	0.18	42	2.7	0.011
SD Study RE	0.37	-	-	-	-	SD Study RE	0.71		-	• /	/-	SD Study RE	0.47	-	-	-	-
SD Resid Err	1.36			-		SD Resid Err	1.23		-	-	/.	SD Resid Err	1.69		-	-	

studies=31, # Subjects=

studies=39, # Subjects=12269

• The database included about 40 studies on 12 treatments involving over 12000 OA patients.

- A general Linear Mixed Effects Model (glme in Splus) was found suitable in describing the proportions of dropouts and proportions of AE's.
- The large sample size provided high statistical power and produced precise model estimates
- Diagnostic plots indicated adequacy of the model fit. Figure 1 shows plots for the dropout model
- All three models determined that strong opioids increase the chances of constipation, nausea and dropout rates.
- Using placebo as a reference group, strong opioids have odds ratios of 7.7, 5.6 and 5.3, respectively. For moderate opioids, the odds ratios were 3.3, 2.7 and 3.3 and for Non-opioids they were 1.5, 1.1 and 1.2.
- Inference on influence of dose is limited by the dose ranges investigated. However, the dropout
 model indicated a dose effect for moderate and strong opioids
- Using model predictions, the distribution of "placebo adjusted" proportions are readily available from model estimates. Figure 2 shows increase in dropout rates in different classes.

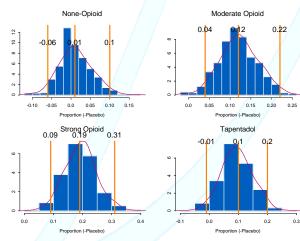
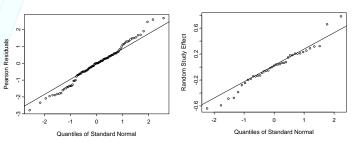



Figure 2: Distribution of predicted dropout rates (placebo subtracted)

studies=30. # Subjects=10726

Fold increase/decrease in rates due to inter-Study variability

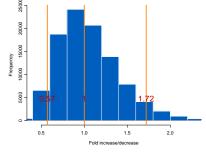


Figure 1:Diagnostic plots of Dropout model: Normal plots of Pearson residuals and random study effect (top) and Distribution of fold increase in rates due to inter-Study variability

CONCLUSIONS

- The models established that rates of AE's and dropouts increase significantly with the strength of opioids.
- While benefits of Meta analysis using public literature are well established [1,2], models for proportions have the added advantage of increased statistical power, a consequence of using subject level information.

